

37th Gun and Ammunition NDIA Symposium

Multi-Role Armament & Ammunition System (MRAAS)

Weapon Stabilization Assessment

United Defense L.P.
Armament Systems Division
Minneapolis, MN

Gregory S. Johnson Jerry C. Chang Jeffrey V. Ireland Rickie L. Stuva Thomas R. Williams

Contents

- Background
- Main Objectives
- Requirements
- Vehicle Dynamics Model
- Gun Pointing Control System Model
- Stochastic Pointing Error Estimation
- Platform Stability Analysis
- Gun Pointing Stiffness Study
- Conclusions

Background

U.S. Army Transformation requires transition to highly transportable fighting force.

The Future Combat System (FCS) is the intended objective - "system of systems" to meet a variety of missions.

Multi-Role Armament & Ammunition System (MRAAS) under development by U.S. Army ARDEC to meet FCS LOS Direct Fire and BLOS/NLOS Indirect Fire lethality requirements.

MRAAS Multi-Mission ATD features:

- Turret Mission Module for integration into light vehicle
- 105 mm cannon with swing chamber
- CTA munitions for direct/indirect fires
- LOS kills out to 4-5 km, BLOS kills out to 50+ km
- <u>C-130 transportable, with 19 ton total</u> system weight.

Main Objectives

As part of 6 Month MRAAS Concepting Study Contract:

- Determine system dynamics impact of integrating a large caliber gun system onto a lightweight ground vehicle.
- Evaluate weapon stabilization performance of MRAAS, including sensitivity to:
 - Gun unbalance due to CG offset from trunnion axis.
 - Disturbances due to vehicle motion over terrain.

Requirements

- Per the MRAAS Turret Mission Module Weapon Control Request For Proposal:
 - Fire Control System shall support LOS engagements under dynamic conditions with no greater than θ_{total} mils error, 1 sigma Root Mean Square (RMS).
 - Muzzle stabilization error shall be no more than θ_{stab} mils RMS.
 - Indirect fire requirements less stringent.
- Dynamic Condition Assumptions:
 - Fire On The Move vehicle speed varied 5 to 30 mph.
 - APG Munson Gravel Course and RRC-9 Stabilization Bump Course terrain models used to span roughness.

Vehicle Concepting

Ley Assumptions:

- MRAAS turret concept mounted in mid and rear locations on wheeled chassis, with balanced/unbalanced armament (CG forward of trunnion
- Appropriate mass property and space claim adjustments made:

venicle Dynamics Model.

Concept	Turret Location	Gun Unbalance
I	Rear	Unbalanced
II	Rear	Balanced
III	Mid	Unbalanced
IV	Mid	Balanced

DADS Development

venicle Dynamics Model.

Ley Vehicle Dynamics Assumptions:

DADS rigid body chassis model.

Simplified wheeled suspension model capturing hydropneumatic non-linear stiffness and damping characteristics

- Heave natural freq. ~ 1.5 Hz (translation)
- Pitch natural freq. ~ 0.75 Hz (rotation)
- Near critical damping
- Tire stiffness & damping.

Vehicle Dynamics Free Body Diagram

5 MPH

10 MPH

20 MPH

30 MPH

DADS Platform Disturbance Estimate

100000

10000

1000

100

PSD [mrad 2/s2/Hz]

Vehicle *Pitch Rate* Disturbance Power
 Spectral Density
 (PSD)

Frequency [Hz]

10

MRAS Gun Pointing Disturbance: Concept I
ATC RRC-9 Stabilization Bump Course, 9/01 Model Update

MATRIXx Development

- Preliminary Elevation GPCS Model created in MATRIXx.
- Outer Gyro Rate P+I Loop (inertial) wrapped around Inner Motor Rate P+I loop (relative).
- MATRIXx model includes:
 - Plant dynamics with variable drive compliance, gear reduction
 - P+I compensation with notch filter
 - Hull rate feed forward sensor with roll-off.

-30

Gun Pointing Control System Wodel: **GPCS Disturbance Rejection Estimate**

Stochastic Pointing Error Estimation

Stochastic Error Estimation: Concept I Sensitivity to Terrain, Speed

MRAAS Gun Pointing Control Bandwidth Analysis Concept I (Unbalanced Gun, Rear Turret)

Elevation Rate Loop Bandwidth [Hz]

Stochastic Error Estimation:

Concept II Sensitivity to Terrain, Speed

MRAAS Gun Pointing Control Bandwidth Analysis Concept II (Balanced Gun, Rear Turret)

Elevation Rate Loop Bandwidth [Hz]

Platform Stability Analysis

Stochastic method appropriate for concept-level parametric trades.

- Allows rapid assessment of multiple simulation scenarios.
- Assumes load motion does not significantly influence base motion (gun and chassis are uncoupled).

Next level of fidelity involves & T coupling MATRIXx pointing control model with DADS suspension model via DADS/Plant.

Resulting "Platform Stability" model used to:

- Analytically verify stochastic method
- Estimate gun drive power requirements using Concepts I & II.

Platform Stability Analysis: Stochastic Method Verification, Concept I

10

Elevation Rate Loop Bandwidth [Hz]

Balanced Gun

100

Platform Stability Analysis:

Elevation Drive Power Estimation

MRAAS Weapon Stabilization Power Estimation RRC-9 Bump Course, 10 Hz 1st Mode, 70% Assumed Overall Efficiency

Gun Pointing Stiffness Study

- Minimum 1st natural frequency of the gun pointing system is constrained by the controller bandwidth.
- The gun pointing system natural frequency is determined by the flexibility of: Gun Drive Actuators, Turret, Gun Mount, Cannon

A parametric study using a NASTRAN FEM was used to investigate first mode sensitivity to:

- Elevation Drive Stiffness
- Mount/Cannon Stiffness
- Mount Extension Length
- Mount Bearing Locations

NASTRAN Armament Finite Element Model

DADS/Plant w/Stabilized Flex Body

DADS/Plant Flexible Body Demonstration

Active Gun Pointing With Armament Structural Flexure

APG RRC-9 Stabilization Course

DADS/Plant - Stabilized Flexible Body

MRAAS Configuration-I Model

30 MPH over RRC-9 Bump Course

(Flexible Gun with Stabilization)

(Deformation Scale = 1)

Conclusions

- Stochastic error estimation method provided rapid concept-level gun pointing performance estimation.
- Reducing gun CG offset from trunnion could reduce req'mts for:
 - Bandwidth & pointing stiffness by up to 25%
 - Maximum drive power by up to 50%
 - Trunnion vertical accelerometer (vertical acceleration feed forward).
- Parametric FEA modeling used for early estimation of optimal gun pointing component stiffnesses.
- Coupled modeling approach provided improved fidelity by leveraging subsystem models.
- Next step is to incorporate a Muzzle Reference Sensor with armament flexure response in the pointing control model.
- Using this approach, the disturbance rejection benefit of an active suspension system can also be evaluated.

Acknowledgements

- Study Co-Authors:
 - Jerry Chang, DADS Vehicle Dynamics
 - Rick Stuva, Gun Pointing Control Analysis
 - Jeff Ireland, Tech Consulting/Pointing Stiffness
 - Tom Williams, Parametric FEA
- This study was initiated and funded by the U.S. Army ARDEC under Contract DAAE30-00-C-1060.
- The authors would like to thank Steven McDonald, Roger Kent, Ramon Espinosa, and Thomas Louzeiro at Picatinny Arsenal; and Stephen Krupski at Benet Labs for their timely assistance, suggestions, and feedback.